

Comparative Analysis of FPGA and GPU Performance for Machine Learning-Based Track Reconstruction at LHCb

Fotis I. Giasemis, Vladimir Lončar, Bertrand Granado, Vava Gligorov 23rd IEEE International NEWCAS Conference, Paris, June 2025

arXiv.2502.02304

ETX4VELO: Graph Neural Network-Based Pipeline for Track Finding at LHCb

The focus is to evaluate deep-learning algorithms performance for **EFFICIENCY and THROUGHPUT**, and estimate how these models scale up with the increase of data rate.

For this purpose we developed the ETX4VELO pipeline which focuses on developing Graph Neural Networks (GNNs) algorithms for track reconstruction inside the VELO subdetector of the LHCb experiment.

Steps of the pipeline:

- Embedding
- Graph Construction

- GNN
- Triplets (not shown in the diagram)
- Score cut

The efficiency reached at this level is on par with the current algorithms in production inside the first-level trigger of LHCb. The ETX4VELO pipeline is based on edge and triplet GNN model that can reconstruct harsh cases of shared hits between tracks.

Graph GNN	GNN Edge scores Score threshold Tracks				
Category	Metric	Allen	ETX4VELO smaller graph	ETX4VELO Larger graph	
 Long, no electrons ✓ In acceptance ✓ Reconstructible in the velo ✓ Reconstructible in the SciFi ✓ Not an electron 	Efficiency	99.26%	99.28%	99.51%	
	Clone rate	2.54%	0.96%	0.89%	
	Hit efficiency	96.46%	98.73%	98.90%	
	Hit Purity	99.78%	99.94%	99.94%	
 Long electrons ✓ In acceptance ✓ Reconstructible in the velo ✓ Reconstructible in the SciFi ✓ Electron 	Efficiency	97.11%	98.80%	99.22%	
	Clone rate	4,25%	7.42%	7.31%	
	Hit efficiency	95.24%	96.54%	96.79%	
	Hit purity	97.11%	98.46%	98.46%	
 Long, from strange ✓ In acceptance ✓ Reconstructible in the velo ✓ Decays from a strange Good proxy for displaced tracks 	Efficiency	97.69%	97.50%	98.06%	
	Clone rate	2.50%	0.92%	0.81%	
	Hit efficiency	97.69%	98.22%	98.77%	
	Hit purity	99.34%	99.68%	99.68%	
Х	Ghost rate	2.18%	0.76%	0.81%	

Inference of the ETX4VELO Models on GPUs and FPGAs

FPGA GPU Comparison

- MLP with INT8 precision implemented on PYNQ-Z2 FPGA using HLS4ML
- Synthesized with Vivado HLS
- Deployed using PYNQ

Device	Memory (GB)	Price (USD)	TDP (W)
AMD Alveo U50	8	3,000	75
AMD Alveo U250	64	~10,000	230
NVIDIA GeForce RTX 3090	24	1,500	350

• Extrapolated to Alveo boards

- Using resource utilization and latency estimates
- Compared to GPU implementation on NVIDIA GeForce RTX 3090

arXiv.2502.02304

Accelerator	Alveo U50	Alveo U250	GeForce RTX 3090
Implementation	<8,3>	<8,3>	TRT INT8
Throughput (Events/s × 10^6)	0.55	1.10	0.82
Active Power Draw (W)	75	230	350
Energy per Event (micro J)	140	210	430
Energy Gain	3.1x	2.0x	1.0x
Price (USD)	3,000	~ 10,000	1,500