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/ ETX4VELO: Graph Neural Network-Based Pipeline for Track Finding at LHCDb

The focus is to evaluate deep-learning algorithms performance for
EFFICIENCY and THROUGHPUT, and estimate how these models scale
up with the increase of data rate.

For this purpose we developed the ETX4VELO pipeline which focuses
on developing Graph Neural Networks (GNNs) algorithms for track
reconstruction inside the VELO subdetector of the LHCb experiment.
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Inference of the ETX4VELO Models on GPUs and FPGAs ¢
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Then we focused on running these algorithms on architectures with more
potential for performance. | python
torch.onnx
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e Inference of the MLP on FPGA@
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FPGA GPU Comparison

MLP with INT8 precision implemented on PYNQ-Z2 FPGA using HLS4ML
Synthesized with Vivado HLS

Deployed using PYNQ NVIDIA GeForce RTX 3090
Extrapolated to Alveo boards

Using resource utilization and latency estimates
Compared to GPU implementation on NVIDIA GeForce RTX 3090
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