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Traffic Anomaly Detection
Setup

• Detection of traffic anomalies → crucial for:


• Effective urban traffic management 


• Congestion mitigation


• Responding to and preventing accidents


• Real-time, minute-by-minute observations from 42 traffic 
cameras across Gothenburg, Sweden


• Preprocessing → Flow metric representing vehicle density: 
number of detected vehicles / maximum vehicle capacity


flow =
number of detected vehicles
maximum vehicle capacity
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STGAN Framework
Capturing Spatiotemporal Features
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• Results with Spatiotemporal Graph Convolutional Adversarial Network 
(STGAN)


• STGAN combines:


• Graph Neural Networks (GNNs)


• Long Short-Term Memory (LSTM)


• To capture complex spatial and temporal dependencies in traffic data
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STGAN Framework
Generator and Discriminator
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Figure B.1: The STGAN framework includes a spatiotemporal generator (left)
and a spatiotemporal discriminator (right). The generator processes three types of
data: recent data (short-term temporal patterns) via a GCGRU module, trend data
(long-term temporal patterns) via an LSTM, and external factors (contextual features
such as weather or events) via a feature extraction network. These inputs are fused
and passed through a GCN to model spatial dependencies, generating a fake sequence,
𝐿𝑀 . The discriminator, using GCGRU and GCN modules, evaluates the generated
sequence against real sequences, 𝐿𝑀 , to distinguish real from fake, enabling robust
modeling of spatiotemporal dynamics. Adapted from [7]. See also [167].

• Traffic network: weighted graph 





• Spatiotemporal Generator: Generates predicted 
sequences of traffic data 


• Spatiotemporal Discriminator: Distinguishes 
between real and generated sequences

G = (V, E, W)

Wij = exp (−
dist(vi, vj)2

σ2 ), if (i, j) adjacent

0, otherwise
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STGAN Framework
Generator Modules
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Figure B.1: The STGAN framework includes a spatiotemporal generator (left)
and a spatiotemporal discriminator (right). The generator processes three types of
data: recent data (short-term temporal patterns) via a GCGRU module, trend data
(long-term temporal patterns) via an LSTM, and external factors (contextual features
such as weather or events) via a feature extraction network. These inputs are fused
and passed through a GCN to model spatial dependencies, generating a fake sequence,
𝐿𝑀 . The discriminator, using GCGRU and GCN modules, evaluates the generated
sequence against real sequences, 𝐿𝑀 , to distinguish real from fake, enabling robust
modeling of spatiotemporal dynamics. Adapted from [7]. See also [167].

• Recent Module: Captures short-term spatiotemporal 
dependencies using a Graph Convolutional Gated 
Recurrent Unit (GCGRU) 


• Trend Module: Learns long-term temporal patterns using 
an LSTM network 


• External Module: Incorporates external factors (e.g., time 
of day, day of the week) using a fully connected layer 


• These inputs are fused and passed through a Graph 
Convolutional Networks (GCN) to model spatial 
dependencies, generating a fake sequence 


• The discriminator, using GCGRU and GCN modules, 
evaluates the generated sequence against real sequences
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STGAN Framework
Anomaly Scores
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Figure B.1: The STGAN framework includes a spatiotemporal generator (left)
and a spatiotemporal discriminator (right). The generator processes three types of
data: recent data (short-term temporal patterns) via a GCGRU module, trend data
(long-term temporal patterns) via an LSTM, and external factors (contextual features
such as weather or events) via a feature extraction network. These inputs are fused
and passed through a GCN to model spatial dependencies, generating a fake sequence,
𝐿𝑀 . The discriminator, using GCGRU and GCN modules, evaluates the generated
sequence against real sequences, 𝐿𝑀 , to distinguish real from fake, enabling robust
modeling of spatiotemporal dynamics. Adapted from [7]. See also [167].

• Anomalies are detected by comparing the 
generated data to the real data and 
assessing the discriminator's confidence


• Anomaly score: combine discriminator 
error and generator error


sG(v, t) = ∥Gθ(v, t) − Xv,t∥2

sD(v, t) = Dϕ(Sv,t) − Dϕ(Ŝv,t)
score(v, t) = sG(v, t) + λsD(v, t)
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Training Process
STGAN Framework

• Preprocessing:


• 5-minute smoothing of the data


• Patch missing minutes (forward fill)


• Truncate times < 4:53 am and > 9:00pm


• Calculation of node distances, node 
subgraphs and time feature (weekday, hour)


• Training: April to November 2020 


• Validation: November 14–23, 2020


• Repo: github.com/fgias/traffic-anomaly-
detection
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Figure B.2: Training metrics for the adversarial training of the STGAN discriminator
and generator. Reproduced from [7].

Epoch Step Discriminator
Loss

Discriminator
Accuracy (%)

Generator
MSE

Generator
Binary
Loss

6 6992 0.693070 53.12 0.007648 0.693215
6 6993 0.693185 43.95 0.007306 0.693100
6 6994 0.693192 48.44 0.007066 0.693192
6 6995 0.693146 48.44 0.006912 0.693143
6 6996 0.693195 45.12 0.007161 0.693341
6 6997 0.693172 49.80 0.008960 0.693488
6 6998 0.693201 51.17 0.008466 0.693458
6 6999 0.693100 54.49 0.008442 0.693006
6 7000 0.693140 47.27 0.008975 0.692538
6 7001 0.693116 23.83 0.009361 0.692604

Table B.1: Discriminator and generator metrics for last 10 steps of training process.
Reproduced from [7].

https://github.com/fgias/traffic-anomaly-detection
https://github.com/fgias/traffic-anomaly-detection
https://github.com/fgias/traffic-anomaly-detection
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Traffic Anomaly Detection
Evaluation

• Calculate the anomaly scores of all the data in the test set 


• Label top K% anomaly scores as anomalies 

lower K  fewer false positives  higher precision


 

• Evaluating AD in real-world scenarios remains an open challenge


• Manually verify anomalies using unprocessed photos

↔ ↔

precision =
true positives

true positives + false positives
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Traffic Anomaly Detection
Results
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• Model effectively detects traffic 
anomalies


• Camera signal cut/restart → Signals 
due to problems with the functioning 
of the camera


• Visual artifacts → Anomalies 
triggered due to the visual quality of 
the input 


• Extreme weather conditions → 
Anomalies due to developments in the 
weather

Fig. 3. Anomalies detected for Camera 25, for 10 test days in November
2020, calculated for K = 0.1%.

Fig. 4. Detection of the beginning of heavy snowfall. Scenes from Camera
14 on Nov. 19, 2020, at 14:10 (top) and 14:20 (bottom).

TABLE III
IDENTIFIED ANOMALIES AND ANOMALY TYPES FOR K = 0.1%.

Anomaly Type Number of Anomalies
Camera signal cut/restart 71

Visual artifacts 2
Extreme weather conditions 2

True positives 75
False positives 6

Total 81

is effectively learning to generate realistic traffic sequences
while distinguishing them from actual data.

The precision values reported in Table II further substantiate
our model’s efficacy. Achieving a precision of 100% at lower
thresholds demonstrates that our method can accurately iden-
tify anomalies without generating false positives. However, as
K increases, a slight drop in precision highlights a common
trade-off in anomaly detection systems—balancing sensitivity
and specificity.

The diversity of identified anomalies outlined in Table III
reveals critical insights into the nature of traffic disruptions.
The predominance of “camera signal cut/restart” anomalies
suggests that infrastructure reliability is a significant concern
in urban traffic monitoring. Additionally, the presence of
visual artifacts and extreme weather conditions as contributing
factors emphasizes the need for adaptive models capable of
distinguishing between genuine traffic anomalies and environ-
mental influences.

The results reveal that weather conditions, such as rain and
snow, substantially impact the flow metrics derived from traffic
camera observations. For instance, during adverse weather,
visual artifacts can mislead traffic detection algorithms, result-
ing in erroneous vehicle density counts. Our model adeptly
identifies these anomalies, showcasing its robustness against
environmental variations.

Furthermore, recent studies, such as [8], highlight the ef-
ficacy of spatial-temporal graph neural networks in traffic
anomaly detection. Their work emphasizes the importance of
modeling both spatial and temporal features; however, they do
not fully leverage the generative capabilities of adversarial net-
works to enhance anomaly detection accuracy. Our approach
not only models these features but also incorporates external
factors like weather conditions and special events, which are
often neglected in other studies.

VI. CONCLUSIONS

Our findings indicate that the STGAN framework effectively
captures complex spatiotemporal patterns in traffic data, lead-
ing to improved anomaly detection performance compared to
traditional methods.

When compared to existing methodologies, utilizing LSTM
networks alone [13], the STGAN framework demonstrates
superior accuracy in capturing both spatial dependencies and
temporal dynamics. For example, while LSTMs can effectively
model long-term temporal dependencies, they often overlook
critical spatial relationships between traffic nodes [14]. In

Identified anomalies and anomaly types for K=0.1%
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Traffic Anomaly Detection
Results
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Dry roads

Wet roads: water creates visual artifacts

• Model effectively detects traffic 
anomalies


• Camera signal cut/restart → Signals 
due to problems with the functioning 
of the camera


• Visual artifacts → Anomalies 
triggered due to the visual quality of 
the input 


• Extreme weather conditions → 
Anomalies due to developments in the 
weather
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Traffic Anomaly Detection
Results
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Identification of Anomalies for Cam25

Camera signal cut/restart
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Traffic Anomaly Detection
Results
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Nov. 19, 2020, Cam14, 14:20

Nov. 19, 2020, Cam14, 14:10

Identification of Anomalies for Cam25
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Nov. 19, 2020, Cam25, 14:15

Traffic Anomaly Detection
Results
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Identification of Anomalies for Cam25

Nov. 19, 2020, Cam25, 14:18
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Conclusion
Traffic Anomaly Detection 

• Presented the STGAN Framework


• Combining GCNs and LSTMs


• Successfully identified spatial and temporal features


• Flagged traffic anomalies due to extreme weather


Future Work 

• Enhancing model robustness against visual artifacts


• Optimizing hyperparameter selection for different urban contexts
This work is part of the SMARTHEP network and it is funded by the European Union’s Horizon 2020 

research and innovation programme, call H2020-MSCA-ITN-2020, under Grant Agreement n. 956086.

Thank you!
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