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Abstract

The Yang–Mills existence and mass gap problem is a famous unsolved problem and one of

the seven Millennium Prize problems defined by the Clay Mathematics Institute (CMI).

The problem can be split into two distinct parts: First, it should be proven that, given

a compact simple gauge group G, there exists a non-trivial quantum Yang–Mills gauge

theory on R4. Then, the second part involves proving that this theory has a mass gap.

In other words, for the mass gap part, it should be proven that the mass of the least

massive particle predicted by the theory is strictly positive. For example, for the strong

nuclear interaction, it should be proven that glueballs have a lower mass bound, i.e. their

mass satisfies: mass ≥ ∆ > 0. It is important to confirm that there exists a mass gap,

because a mass gap might imply that some forces in nature, like Yang–Mills fields, have

a finite range, as opposed to the infinite range of the electromagnetic force. Generally, in

the physics community, the existence of the mass gap is considered as proven but it does

not satisfy the standards of mathematical rigour.

The aim of the dissertation is to study this problem. First, the essential mathematical

background will be explored and then the problem will be revisited, with focus on the

mass gap part. Then, we will look at the evidence for the existence of the mass gap that

is convincing enough for physicists, and ultimately, we will try to understand where it

falls short of the essential mathematical rigour. Finally, some of the different methods

for solving the problem, and where these methods fail, will be described.
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Chapter 1

Introduction

1.1 A brief history

In the beginning of the 20th century it was realised that classical physics was inadequate

to describe the physical world on subatomic scales. This led to the development of

quantum mechanics which, at the time, was a groundbreaking theory. One of its most

puzzling aspects is its interpretation: how does the mathematical theory of quantum

mechanics correspond to reality? This new theory managed to explain a lot of physical

phenomena that were not previously understood.

However, quantum mechanics of particles was not the complete picture. The concept

of a field made its first appearance in Maxwell’s theory of electromagnetism in the 19th

century. By the early 1930s it was clear that a theory that incorporates both concepts

of a field and a particle was necessary. This was the beginning of quantum field theory

(QFT), were classical fields were promoted to quantum fields, in a way analogous to the

first quantization. The surprising result of this theory is that the distinction between

particles and fields breaks down and particles are realised as different excitations of the

underlying field.

Gauge theories are important as the successful QFTs describing elementary particle

physics. Maxwell’s theory is the classical example of a gauge theory, where its gauge
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symmetry group is the abelian group U(1). The concept of a gauge was introduced by

Hermann Weyl in 1918, in his attempt to unify general relativity with electromagnetism,

and four years later Schrödinger proposed that Weyl’s gauge theory could be used in the

quantum mechanical description of the electron. Similar proposals were made indepen-

dently by Vladimir Fock and Fritz London some years later. The first widely recognized

gauge theory, the U(1) symmetry of electromagnetism, was popularized by Pauli in his

1941 paper “Relativistic Field Theories of Elementary Particles” [1].

In 1954 [2], in attempt to construct a theory that would describe the strong interaction,

Chen Ning Yang and Robert Mills generalized the gauge invariance of electromagnetism.

They tried to build a theory with symmetry group SU(2) instead of U(1). This idea,

together with the mechanism of spontaneous symmetry breaking through which massless

gauge bosons acquire mass, later led to the unification of electromagnetism with the weak

interaction, the electroweak theory with gauge group SU(2)× U(1). On the other hand,

the theory of the strong interaction, quantum chromodynamics (QCD), was completely

described, in the 1970s, by a non-abelian gauge theory in which the gauge group is SU(3).

The full theory, including the strong and the electroweak interaction, is now known as

the standard model, with symmetry group G = SU(3)× SU(2)× U(1). The tremendous

success of the standard model in unifying three of the four known fundamental forces as

well as its accurate experimental predictions exemplify the importance of gauge theories

in physics.

1.2 Why quantum field theory?

Classical properties of gauge theory are within the reach of established mathematical

methods and, indeed classical non-abelian gauge theory played an important role in

the study of three- and four-dimensional manifolds. However, one does not yet have a

mathematically complete example of a quantum gauge theory in four dimensional space-

time. Quantum field theory started to have a central role in physics in the 20th century
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and it is likely that it will be important for 21st century mathematics as well.

Resulting from the study of quantum field theory, new mathematical ideas have been

produced. For example, from the analysis side, new measures have been constructed to

suit the needs of the particular theory such as Euclidean-invariant measures on spaces

of generalized functions. Renormalization theory provides a mathematical framework for

the study of singularities in QFTs, and results from this theory also apply to other areas

of mathematics. On the algebraic side, it has led to new discoveries involving topics such

as quantum groups.

Most importantly, geometry has plenty of examples of new mathematical structures

that have their roots in the study of quantum field theory. One famous example is

mirror symmetry, a relationship between Calabi–Yau manifolds. Initially discovered by

physicists, mirror symmetry became interesting to mathematicians around 1990 when

it was proven that this relationship could be used as a tool in enumerative geometry,

effectively a theory of counting in geometry. Today, mirror symmetry is a major research

topic in pure mathematics. Other examples include Donaldson theory of 4-manifolds and

the Jones polynomial of knot theory.

For these reasons the scientific advisory board of the CMI has chosen a millennium

problem about quantum gauge theory. A solution of the problem would require under-

standing of one deep unsolved mystery, the existence of a mass gap, and also producing

a mathematically complete description of a quantum gauge theory in four dimensions.
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Chapter 2

Gauge fields and gauge theory

2.1 Gauge transformations

We begin by discussing invariance in field theories as presented in [3]. Very often, for

a specific theory, there exists a freedom in the choice of the configuration of the fields.

A transformation between two distinct descriptions is called a gauge transformation.

After a gauge transformation, all the observables are identical to the initial ones and the

underlying invariance is called a gauge invariance. As an example we look at the complex

scalar field theory

L = (∂µϕ)
†(∂µϕ)−m2ϕ†ϕ .

This theory has a U(1) symmetry, i.e. we can do the transformation

ϕ(x) 7→ ϕ(x)eiα ,

and the Lagrangian is invariant. Because α does not depend on x—it is the same at

every point in spacetime—this is called a global transformation. This is in contrast to

local transformations, where α = α(x). Now, this theory is not invariant under local

U(1) transformations, but can be made invariant by introducing a new field Aµ(x) via
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the covariant derivative Dµ defined as

Dµ = ∂µ + iqAµ(x) , (2.1)

where q is known as the coupling strength. Then, insisting that Aµ(x) transforms as

Aµ(x) 7→ Aµ(x)− 1
q
∂µα(x) the new Lagrangian

L = (Dµϕ)
†(Dµϕ)−m2ϕ†ϕ (2.2)

is invariant. In the Lagrangian above we have omitted the gauge kinetic term but we

will see how it enters into the discussion in the next section. Summarising, doing the two

transformations simultaneously

ϕ(x) 7→ ϕ(x)eiα(x)

Aµ(x) 7→ Aµ(x)−
1

q
∂µα(x)

our theory with Lagrangian 2.2 is unchanged. Finally, such a theory is called a gauge

theory and the relevant Aµ(x) is known as a gauge field.

2.2 The QED Lagrangian

Let us now review quantum electrodynamics (QED) from the modern viewpoint, as in

[4]. We begin with the complex-valued Dirac field ψ(x) and insist that our theory should

be invariant under the local transformation

ψ(x) 7→ eiα(x)ψ(x) . (2.3)

The question that we need to answer is the following: how do we construct the Lagrangian

that is invariant under this transformation? Of course, when no derivatives are involved,
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this is easy to answer: add terms that are invariant to global phase rotations. For

example, mψ̄ψ, where ψ̄ = ψ†γ0.

As we saw in the previous section, when derivatives are involved things are more

difficult. The directional derivative is defined as usual

nµ∂µψ = lim
ϵ→0

1

ϵ
[ψ(x+ ϵn)− ψ(x)] .

But, in order for this definition to make sense, the two fields that are being subtracted

need to have the same transformation laws. The simplest way to do this is to introduce

the scalar quantity U(y, x) that obeys

U(y, x) 7→ eiα(y)U(y, x)e−iα(x) (2.4)

simultaneously with 2.3. Then, set U(x, x) = 1 and then work infinitesimally

U(x+ ϵn, x) = 1− ieϵnµAµ(x) +O(ϵ2) . (2.5)

In this way a new vector field Aµ(x) has appeared as the coefficient of the expansion.

Then, the covariant derivative takes the form 2.1, with q = e. By inserting the above in

2.4 we find the transformation law of Aµ(x), as we saw it in the previous section.

Now to find a kinetic term for the Lagrangian we need to use the explicit expression

of the comparator U(y, x). Extending equation 2.5 to the next term in the expansion of

ϵ we get

U(x+ ϵn, x) = exp
[
−ieϵnµAµ(x+

ϵ

2
n) +O(ϵ3)

]
.

Define the product of comparators around the four corners of a square in the (1, 2)-plane

as in

U(x) ≡ U(x, x+ ϵ2̂)U(x+ ϵ2̂, x+ ϵ1̂ + ϵ2̂)U(x+ ϵ1̂ + ϵ2̂, x+ ϵ1̂)U(x+ ϵ1̂, x) . (2.6)
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x x+ε1

x+ε2

Figure 2.1: Construction of the field strength by comparisons around a small square in
the (1, 2)-plane.

The transformation law 2.4 of U implies that U is locally invariant. Now take the limit

ϵ→ 0 to get

U(x) = 1− iϵ2e[∂1A2(x)− ∂2A1(x)] +O(ϵ3) .

Hence, the structure Fµν = ∂µAν − ∂νAµ is locally invariant. We omit the rest of the

argument, which can be found in 15.1 in [4]

The important conclusion is the following. We started by stipulating that the electron

field obeys the local symmetry 2.3. From this, we showed the existence of an electro-

magnetic vector potential. Furthermore, the symmetry principle implies that the most

general renormalizable Lagrangian in four dimensions, invariant under parity or time

reversal, has the form

L = ψ̄(i /D −m)ψ − 1

4
FµνF

µν , (2.7)

where Fµν is the electromagnetic tensor. Note that we have used Feynman slash notation

and Einstein summation convention. This is the Maxwell-Dirac Lagrangian used in QED.

Since, the group U(1) is abelian, this theory is an abelian gauge theory.

2.3 The Yang–Mills Lagrangian

Just as the simple geometrical argument of the previous section starting from U(1) sym-

metry gave us Maxwell’s equations, in a much similar way, Yang and Mills generalised
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the argument for an arbitrary continuous and compact symmetry group G, called the

gauge group. In this case, for an irreducible representation r of G, the Lagrangian is [4]

Lpure YM = −1

4
F a
µνF

aµν , (2.8)

where now the index a runs over all the independent generators of the local symmetry.

The index r, in the generators tar , refers to the representation r of G. The infinitesimal

transformation laws are

ψ 7→ (1 + iαata)ψ

Aa
µ 7→ Aa

µ +
1

g
∂µα

a + fabcAb
µα

c ,

where fabc are the structure constants of the Lie algebra obeying

[ta, tb] = ifabctc.

The field tensor F a
µν is defined by

[Dµ, Dν ] = −igF a
µνt

a ,

or more explicitly

F a
µν = ∂µA

a
µ − ∂νA

a
µ + gfabcAb

µA
c
ν ,

using the expression for the covariant derivative

Dµ = ∂µ − igAa
µt

a
r .

Any such gauge theory, where the local symmetry group G is the SU(N) group is called

a Yang–Mills gauge theory. In general, the theories with a non-abelian symmetry group

G are called non-abelian gauge theories.

To construct a theory of SU(N) Yang–Mills fields interacting with fermions, we add
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the Dirac Lagrangian ψ̄(i/∂ − m)ψ to the pure Yang–Mills Lagrangian 2.8 and perform

the usual substitution

∂µ → Dµ .

The new Lagrangian is then

L = ψ̄(i /D −m)ψ − 1

4
F a
µνF

aµν , (2.9)

which looks almost identical to the QED Lagrangian 2.7. However, now ψ is an N -

multiplet

ψ =




ψ1

ψ2

...

ψN



,

transforming as

ψi 7→ (δij + iαa(ta)ij)ψj .

In section 4.1 we will see the definition of QCD according to the above.

The Yang–Mills Lagrangian and all the above can be described in a more elegant way

in the coordinate free approach of differential forms, see, for example, [5].
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2.4 Quantization

The next step is to quantize the theory. From this procedure we obtain the propagators of

the theory and the Feynman rules for fermions and gauge bosons. Also, it should be noted

that in this procedure new particles called Fadeev–Popov ghosts, which have spin 0 but

fermionic statistics, are generated. These fermionic scalars must be included in internal

lines for consistency even though they never appear in external states. They compensate

the unphysical degrees of freedom still contained in the gauge fields Aµ using a covariant

gauge-fixing condition as ∂µA
µ = 0. It is speculated that in order to have Lorentz

invariance in a perturbative gauge theory, ghosts are unavoidable [6]. For completeness,

we give the Feynman rules for a Yang–Mills theory (that has not undergone spontaneous

symmetry breaking) here.1 For a more detailed discussion and derivation of the rules,

see any textbook such as [7], [4] or [8].

1Figures from [8].
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180 Gauge theories

vertices mix physical and non-physical degrees of freedom. Since the conserved Noether
current is not gauge-invariant, we cannot use the argument presented in section 7.2.
Alternatively, we can use the Rξ-gauge if we include Faddeev–Popov ghosts also as
external particles. In order to subtract the unphysical contributions to the squared
matrix elements correctly, one has to add the factor (−1)n to a term AiA∗

j with 2n
Faddeev–Popov ghosts (Nachtmann, 1990).

10.A Appendix: Feynman rules for an unbroken gauge theory

The Feynman rules for a non-broken Yang–Mills theory as QCD are given in the
Rξ gauge; for the abelian case of QED set the structure constants fabc = 0, T = 1
and replace gs → eqf , where qf is the electric charge of the fermion in units of the
elementary charge e > 0. The momentum flow is indicated by the thin arrow: for
instance, all momenta are chosen as in-going in the triple gauge vertex (10.82).

Propagators

−iδab

[
ηµν

k2 + iϵ
− (1 − ξ) kµkν

(k2)2

]
(10.80)µ, a ν, b

A

δab
i

k2 + iϵ
(10.81)

c
a b

Triple Gauge Interactions

−gsf
abc[ ηµν(p1 − p2)

ρ + ηνρ(p2 − p3)
µ

+ηρµ(p3 − p1)
ν ]

p1 + p2 + p3 = 0

(10.82)

µ, a ν, b

ρ, c

p1

p2

p3

Quartic Gauge Interactions

−ig2
s

[
feabfecd(ηµρηνσ − ηµσηνρ)

+feacfedb(ηµσηρν − ηµνηρσ)

+feadfebc(ηµνηρσ − ηµρηνσ)
]

p1 + p2 + p3 + p4 = 0

(10.83)

µ, a ν, b

ρ, cσ, d

p1 p2

p3p4
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Fermion Gauge Interactions

−i gsγ
µT a

ij (10.84)

µ, a

ji
p1

p2

p3

Ghost Interactions

gs fabcpµ
1

p1 + p2 + p3 = 0
(10.85)

µ, c

a b
p1

p2

p3

Summary

Requiring local symmetry under a gauge group as SU(n) or SO(n) specifies the
self-interactions of massless gauge bosons as well as their couplings to fermions
and scalars. The presence of self-interactions implies that a pure Yang–Mills
theory is non-linear. The gauge-invariant derivative Dµ is the analogon to the
covariant derivative ∇µ of gravity, while the field-strength corresponds to the Rie-
mann tensor. Both measure the rotation of a vector which is parallel-transported
along a closed loop. The quantisation of Yang–Mills theories in the covariant Rξ

gauge leads to ghost particles. These fermionic scalars compensate the unphys-
ical degrees of freedom still contained in the gauge fields Aµ using a covariant
gauge-fixing condition as ∂µAµ = 0.

Note also the interplay between local and global symmetries. A global sym-
metry transformation U maps a physical state onto a different physical state with
the same properties, implying via Noether’s theorem a conserved current. A local
symmetry transformation U(x) maps a physical state on itself, implying a re-
dundancy in our description of the system. Since local symmetries contain global
transformations as a subgroup, they imply always also the conservation of global
charges via Noether’s theorem.

Further reading. The Feynman rules in the appendix are taken from Romao and
Silva (2012). This article contains all Feynman rules for the SM in a convention-
independent notation which allows an easy comparison of references with differing
conventions. Current conservation in non-abelian theories is discussed, for example in
Leader and Predazzi (2013). The extension of the helicity formalism to QCD, where it
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Chapter 3

The problem

3.1 Quantum fields

A quantum field (local quantum field operator) is an operator-valued generalized function

on space-time obeying certain axioms. We first have a brief look through the required

properties as described at a physical level of precision, and then turn to a more rigorous

definition of them.

3.1.1 Canonical quantization

As described in many textbooks, see for example [8], we start with a classical field ϕ.

A field is map which associates to each point in space-time x a k-tuple of values ϕa(x),

a = 1, ..., k, which transform under some representation of the Poincaré group. Then,

with the Lagrangian

L = L(ϕa, ∂µϕa) ,

we can construct the action

S[ϕa] =

∫

Ω

d4xL(ϕa, ∂µϕa)
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and from the varying the fields ϕa we obtain the Euler-Lagrange equations

∂L
∂ϕa

− ∂µ
∂L

∂(∂µϕa)
= 0 .

Also, we define the momentum πa conjugate to ϕa as

πa =
∂L
∂ϕ̇a

.

The next step is to promote each field ϕa to an operator ϕ̂a. Now ϕ̂ associates to each point

in space-time x a k-tuple of operators ϕ̂a(x), a = 1, ..., k, and therefore is an operator-

valued function. Consequently, we have promoted the classical field ϕ to a quantum

field ϕ̂. Similarly, we promote πa to π̂a. Finally, we impose the equal-time canonical

commutation/anti-commutation relations

[ϕa(x⃗, t), π
b(y⃗, t)] = iδ(3)(x⃗− y⃗)δba (3.1)

[ϕa(x⃗, t), ϕb(y⃗, t)] = [πa(x⃗, t), πb(y⃗, t)] = 0 , (3.2)

where [., .] is a commutator or an anti-commutator depending on our theory. Now, since

the fields are operators we also have to define the space of states upon which the fields

act on. For free theories, this is the Fock space defined as

vacuum: |0⟩ , such that â(p⃗) |0⟩ = 0 ,

general state: |Ψ⟩ = â†(p⃗1) · · · â†(p⃗n) |0⟩ ,

where â†(p⃗) and â(p⃗) are the creation and annihilation operators in terms of which the

fields can be expanded.

This is the general outline for the procedure of quantizing a field.
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3.1.2 Mathematical formulation

Turning to the more mathematical treatment, we describe the axioms, known as G̊arding–

Wightman axioms, for the notions of field and field theory in Streater & Wightman

(1964) [9].

General comments

Quantum field theory, even for the case of a free theory, suffers from ultraviolet (UV)

divergences that arise from the unconstrained internal momenta in loops. This leads

to the collection of techniques known as renormalization. Consequently, defining the

field at a point is problematic. The Wightman formulation overcomes this problem by

introducing the idea of a smeared field. For example, in the case of the electric field,

E(x, t) is not a well-defined operator, while the smeared field E(f) =
∫
dxdtf(x)E(x, t)

is. Here, the test function f is C∞ and of compact support.

Now, we discuss the Wightman axioms.

W0 — assumptions of relativistic quantum theory

The basic idea of the zeroth axiom is that there is a Hilbert space H, and the Poincaré

group acts unitarily on that Hilbert space. In this way, we can define the energy-

momentum operator P µ, for which P µPµ = m2 is interpreted as the square of the mass.

Also, the eigenvalues of P µ lie in the forward cone. The last part of the axiom is that

there exists a state Ω ∈ H, known as the vacuum, that is invariant under the action of

the Poincaré group and it is unique, up to a phase.

W1 — assumptions about the domain and continuity of the field

The first axiom has to do with the domain of definition of the fields. For each test function

f there exists a set of operators ϕ1(f), ..., ϕn(f), that together with their adjoints are

defined on a domain D that is dense in H and contains the vacuum. The fields ϕ are
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operator-valued tempered distributions, i.e. generalized functions that admit a Fourier

transform.

W2 — transformation law of the field

The second axiom describes the transformation law that fields ϕi(f) obey. They transform

under some representation of the Lorentz group.

W3 — local commutativity, sometimes called microscopic causality

An important part of a quantum field theory is its causal structure, which is addressed

by the third axiom. If the support of f and the support of g are space-like separated (in

analogy to two fields being space-like separated) then

[ϕi(f), ϕj(g)]± = 0 ,

where [., .]± denotes the commutator (−) or the anticommutator (+).

Consequences

From these axioms several theorems follow. For example, the CPT theorem, i.e. that any

Lorentz invariant local quantum field theory with a Hermitian Hamiltonian must have

CPT symmetry, and the spin-statistics theorem. [10]

Existence of theories which satisfy the Wightman axioms

These axioms were defined for R4 but one can generalize the Wightman axioms to other

dimensions other than D = 4. In fact, interacting theories that satisfy the axioms have

been constructed in D = 2 and D = 3. However, in D = 4 there is no proof that the

Wightman axioms can be satisfied by interacting theories. In particular, the existence

part of the problem we have been examining is exactly that: to prove that the axioms

can be satisfied by gauge theories in R4.
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3.2 Statement of the problem

Now we turn to the official statement of the problem in [11]. To establish existence of

four-dimensional quantum gauge theory with gauge groupG, one should define a quantum

field theory in the above sense. Since the vacuum vector Ω is Poincaré invariant, it is

an eigenstate of the Hamiltonian with zero energy, namely HΩ = 0. We know that the

spectrum of H is within [0,∞), and we say that a quantum field theory has a mass gap

∆ if H has no spectrum in the interval (0,∆) for some ∆ > 0. The supremum of such ∆

is the mass m and we require m <∞. The statement of the problem is as follows.

Yang–Mills Existence and Mass Gap

Prove that for any compact simple gauge group G, a non-trivial quantum Yang–Mills

theory exists on R4 and has a mass gap ∆ > 0. Existence includes establishing ax-

iomatic properties at least as strong as those cited in [9], [12].

3.3 Existence

To illustrate the difficulty of the problem, we might compare it with classical Yang–Mills

theory. By minimizing the Yang–Mills action, we obtain a system of non-linear partial

differential equations. The most basic mathematical question here is to specify a class of

initial conditions for which we can guarantee existence and uniqueness of solutions. Such

questions have seen great development in recent years, using techniques from the theory

of linear PDE’s.

By contrast, there is no rigorous definition of quantum Yang–Mills theory, because of

the difficulties of renormalization. The simplest starting point is to consider Yang–Mills

theory on a lattice, or in other words, a graph Γ. That is, we can define the partition

function

Z[γ,G] =

∫ ∏
dUi e

−S ,

18



over a finite subgraph γ ∈ Γ. The integral is over all holonomies in γ, S is the Yang–Mills

action and the measure is the product of Haar measure for the holonomy on each edge

in γ. Then, the question is whether there is a sensible way to define the limit of Z[γ]

for increasingly larger subgraphs γ ∈ Γ. This limiting process is the equivalent of taking

a→ 0. Taking this limit will clearly involve renormalization.

In this limit, the axioms satisfied by the correlation functions in a continuum quantum

field theory, and other axioms regarding the construction of the Hilbert space and the

operator interpretation of the theory, have to be established. This is the existence part

of the problem. [13]
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Chapter 4

The mass gap

Let us now turn to the mass gap part of the problem.

4.1 QCD and its properties

We consider QCD, a well-studied example of non-abelian gauge theory. QCD is SU(3)

gauge theory interacting with fermions (quarks of the various flavours) each assigned to

the fundamental representation of the local gauge group SU(3). In other words, the

Lagrangian is of the form 2.9

LQCD =
∑

f

ψ̄f (i /D −m)ψf −
1

4
F a
µνF

aµν ,

where f is the flavour index, G = SU(3) and

ψ =




ψ1

ψ2

ψ3



,

with {ψi}i=1,2,3 usually identified with the three different colours of the quarks (red, green

and blue).
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We saw in the previous chapter the definition of the mass gap: some constant ∆ > 0

such that every excitation of the vacuum has energy at least ∆. The existence of a mass

gap is very important for the theory described because the absence of it might imply

that the Yang-Mills fields are long-ranged, like, for example, QED. On the other hand,

QCD describes the strong interaction, which is considered to be short-ranged. Therefore

a mass gap is one of the required properties of QCD. Also, solving the question of the

mass gap will force mathematical physicists to understand exactly what the observables

of QCD are.

In order for QCD to describe the strong interaction, it must have three properties

[11]:

(1) It must have a mass gap.

(2) It must have quark confinement.

(3) It must have chiral symmetry breaking.

Although, both experimental evidence and computer simulations 1 carried out since the

1970s suggest that QCD fulfils the above requirements, these properties are still not

completely understood theoretically. Only in simplified models of the theory, i.e. severely

truncated ones, these properties can be seen in theoretical calculations. In particular,

standard perturbation theory fails in the infrared regime, i.e. low energies, where QCD

is strongly coupled. This property of QCD at low energies is known as infrared slavery.

On the other hand, in the ultraviolet regime, QCD is asymptotically free, that is, at

high energies the interactions between quarks become weaker and weaker, and hence

perturbation theory becomes reliable. This feature of QCD was discovered in 1973 [14],

and we will have a brief look at it in the next section.

1For example, see [15].
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4.1.1 Asymptotic freedom

The beta function, β(g), of a theory, describes the dependence of the theory’s coupling

constant, g, on the energy scale, µ, of a given process. It is defined as

β(g) =
∂g

∂ log(µ)
.

When β(g) vanishes, the coupling parameter is independent of the scale and the theory is

said to be scale invariant. On the other hand, if the beta function is non-zero, the theory

has scale dependence. Interestingly, the coupling parameters of a quantum field theory

can be scale dependent even though the classical field theory is scale invariant. This is

known as a scale or conformal anomaly. There are various ways of explicitly calculating

the beta function, and one example is perturbation theory.

For QCD, the one-loop beta function with nf flavours and ns scalar coloured bosons

is [4]

β(g) = − g3

(4π)2

(
11− ns

3
− 2nf

3

)
.

For appropriate values of nf , ns, the expression above is negative, indicating that QCD

is asymptotically free. At high energies, the coupling becomes weak, and at low energies,

the coupling becomes increasingly strong, which presumably leads to confinement. We

will discuss confinement in the next section. This behaviour is experimentally confirmed,

as shown in the figure. The coupling α is defined as usual

α :=
g2

4π
.

It is also worth pointing out that even though the classical theory has no mass scale, the

quantum theory, after including quantum corrections, has developed a scale dependence.

This introduces a scale, which is the scale at which confinement occurs.

1Figure from [16].
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9. Quantum chromodynamics 39

They are well within the uncertainty of the overall world average quoted above. Note,
however, that the average excluding the lattice result is no longer as close to the value
obtained from lattice alone as was the case in the 2013 Review, but is now smaller by
almost one standard deviation of its assigned uncertainty.

Notwithstanding the many open issues still present within each of the sub-fields
summarised in this Review, the wealth of available results provides a rather precise and
reasonably stable world average value of αs(M

2
Z), as well as a clear signature and proof of

the energy dependence of αs, in full agreement with the QCD prediction of Asymptotic
Freedom. This is demonstrated in Fig. 9.3, where results of αs(Q

2) obtained at discrete
energy scales Q, now also including those based just on NLO QCD, are summarized.
Thanks to the results from the Tevatron and from the LHC, the energy scales at which
αs is determined now extend up to more than 1 TeV♦.

QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)  

0.1

0.2

0.3

αs (Q2)

1 10 100Q [GeV]

Heavy Quarkonia (NLO)
e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

April 2016

τ decays (N3LO)

1000

 (NLO
pp –> tt (NNLO)

)(–)

Figure 9.3: Summary of measurements of αs as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of αs is
indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading
order; res. NNLO: NNLO matched with resummed next-to-leading logs; N3LO:
next-to-NNLO).

♦ We note, however, that in many such studies, like those based on exclusive states of
jet multiplicities, the relevant energy scale of the measurement is not uniquely defined.
For instance, in studies of the ratio of 3- to 2-jet cross sections at the LHC, the relevant
scale was taken to be the average of the transverse momenta of the two leading jets [434],
but could alternatively have been chosen to be the transverse momentum of the 3rd jet.

June 5, 2018 19:47

Figure 4.1: Measurements of the strong coupling αs as a function of the energy scale Q.1

4.1.2 Colour confinement

The mass gap problem is closely related to colour confinement: the expected phenomenon

in Yang–Mills theory/QCD that colour charged particles (e.g. quarks or gluons) cannot

be isolated. Instead, quarks and gluons combine to form colourless combinations known

as hadrons or mesons. There are also bound states composed only from gluons and they

are called glueballs. When one tries to separate two quarks, the potential energy increases

linearly until a quark anti-quark pair is created and the result is two different bound states

of quarks. This process is known as string breaking. In accelerator experiments, string

breaking occurs multiple times and it is observed in the form of hadronization jets [17].

It is important to note here that even though infrared slavery, which we saw in the

previous section, näıvely looks like a promising explanation of confinement, in [18] it is

shown that this is not the full explanation.

Confinement is related to the mass gap in the following simple way. Even if the

constituent parts of a bound (due to confinement) system may be massless, the system

will have a strictly positive mass. Therefore, if colour confinement is proven to be a

property of QCD, the mass gap will be understood. As we mentioned earlier, there is no
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analytic proof of colour confinement for any non-abelian gauge theory.

As of now, the best we can do is to study computer simulations of lattice gauge theory.

4.1.3 Lattice QCD

Lattice QCD is a non-perturbative approach to the solution of QCD. It is a lattice

gauge theory formulated on a grid or lattice of points in space-time. Then, one recovers

continuum QCD by taking the limit of the spacing of the lattice to zero. Formulating

the theory on lattice of spacing a naturally introduces a momentum cutoff of the order

1/a, and hence the theory is regularized. As a result, lattice QCD is mathematically

well-defined. This is the reason why lattice QCD is used for the investigation of non-

perturbative phenomena in QCD such as colour confinement. Indeed, our best evidence

that colour confinement is really a property of QCD comes from Monte Carlo simulations

of lattice gauge theory. In order to explain what a lattice field theory is and the important

related concepts, we will look at the Ising model of ferromagnetism.

The Ising model

We will mostly follow [19]. Consider a solid with a cubic structure. Each atom on the

D-dimensional lattice can be on one of two states, “spin up” or “spin down”, with the

magnetic moment oriented along the direction of spin. The Hamiltonian is

H = −J
∑

x

D∑

µ=1

s(x)s(x+ µ̂) , (4.1)

where s(x) = 1 represents an atom at x with spin up, s(x) = −1 represents spin down and

J is a positive constant. At low temperatures in any dimension D > 1, most spins tend

to point in the same direction and this is due to the interaction between neighbouring

spins. This is known as an ordered state. On the other hand, at high temperatures, the

system is in a disordered state, where the average spin is zero. Now, according to the

usual principles of statistical mechanics, the probability of a spin configuration {s(x)} at
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a temperature T is given by

Prob[{s(x)}] = 1

Z
exp

[
− H

kT

]
,

and

Z =
∑

{s(x)}
exp

[
β
∑

x

D∑

µ=1

s(x)s(x+ µ̂)

]
,

where β = J/kT . Now observe that the Hamiltonian H[{s(x)}], and the probability

distribution Prob[{s(x)}], are invariant under the transformation of each spin by

s(x) → s′(x) = zs(x) where z = ±1 . (4.2)

The two transformations for z = 1 and for z = −1 form a group, known as Z2. The

operation 4.2 is a global transformation. Considering the average spin

⟨s⟩ =
∑

{s(x)}

1

Nspins

(∑

x′

s(x′)

)
Prob[{s(x)}] ,

it is apparent now that it should be zero. From this argument it would appear that

permanent magnets are impossible. This is correct in the sense that it is impossible to

have permanent magnets at a finite temperature for infinitely long time. So the above

is formally true, but for “practical” purposes completely wrong. It is therefore useful to

introduce an external magnetic field h

Hh = −J
∑

x

D∑

µ=1

s(x)s(x+ µ̂)− h
∑

x

s(x) ,

Zh =
∑

{s(x)}
exp [−H/kT ] ,
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so that ⟨s⟩ ≠ 0 at any temperature, and then consider the limit

m = lim
h→0

lim
Nspins→∞

1

Zh

∑

{s(x)}

1

Nspins

(∑

x′

s(x′)

)

×exp

[
β
∑

x

D∑

µ=1

s(x)s(x+ µ̂) +
h

kT

∑

x

s(x)

]
.

In this case, we can have m = ⟨s(x)⟩ ̸= 0, and we say that the Z2 global symmetry is

spontaneously broken. That is, despite the invariance of the Hamiltonian, an observ-

able (such as the magnetization m) which is not invariant under the Z2 symmetry can

nevertheless give a non-zero expectation value. At high temperatures the symmetry is

unbroken. In general, in the unbroken symmetry phase, the symmetry of the Hamiltonian

implies the vanishing of the expectation values of observables that are not invariant under

the symmetry group. In the broken phase, non-invariant observables can have non-zero

expectation values. It turns [19] out that the symmetry-breaking phase transition (e.g.

what happens when heating an Ising ferromagnet beyond its Curie temperature) appears

only for D ≥ 2.

Gauge invariance: the unbreakable symmetry

The spin system described is an example of a lattice field theory. The points of the lattice

are known as sites and the lines joining neighbouring sites are links. Consider a local

gauge transformation. The trick now is to associate the dynamical degrees of freedom

with the links of the lattice. Denote by sµ(x) the spin associated to the link between sites

x and x+ µ̂. The Hamiltonian for the gauge-invariant Ising model is

H = −J
∑

x

D−1∑

µ=1

D∑

ν>µ

sµ(x)sν(x+ µ̂)sµ(x+ ν̂)sν(x) ,

and it is invariant under

sµ(x) → z(x)sµ(x)z(x+ µ̂) ,
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where the z(x) = ±1 can be chosen to be different at each site. This is the local Z2 gauge

symmetry of the Ising model. As a consequence, we have [19] [20] Elitzur’s theorem: A

local gauge symmetry cannot break spontaneously. The expectation value of any gauge

non-invariant local observable must vanish. Therefore, the average spin on a link will be

zero, even if we introduce an external field h. We have to look, instead, to gauge-invariant

observables. These can be constructed by taking the product of spins on links around a

closed loop C

W (C) =

〈 ∏

(x,µ)∈C
sµ(x)

〉
.

This is a particular example of a Wilson loop, and it is analogous to the construction of

U in equation 2.6. These loops were in introduced by Kenneth G. Wilson in 1974 [21] in

an attempt to formulate QCD non-perturbatively.

One can generalize the construction for Z2 to any symmetry group G, just by choosing

link variables which are elements of G. Then, the action, written in terms of Wilson loops,

has to be evaluated for different configurations and summed over to make the total sum.

This is done numerically, after performing a Wick rotation on the action to get the

Euclidean action. After Wick rotation, the field theory can be regarded as a statistical

(rather than quantum) system and here the powerful Monte Carlo method comes in. In a

lattice Monte Carlo, the idea is to replace the integral over all configurations, weighted by

the distribution 1
Z
e−S[U ], by an average over a finite set of sample lattice configurations

{U (n)}n=1,...,Nconf

⟨Q⟩ =
∫

DUQ[U ] 1
Z
e−S[U ]

≈ 1

Nconf

Nconf∑

n=1

Q[U (n)] ,

where the sample configurations are generated stochastically. One has finally to perform

an extrapolation to the continuum by approaching the limiting case in which the lattice

spacing a→ 0 [22].
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4.2 Clustering

Now, we look at another important implication of the existence of a mass gap. Locality

in QFT is implemented by using local interactions in the Lagrangian density, i.e. only

products of fields and their derivatives at a single point [23]. It turns out that the structure

of correlators in a QFT is central to understanding characteristics of the theory, one of

them being locality. In particular, one is interested in the spacelike asymptotic behaviour

of truncated correlators comprised of field clusters. This behaviour is characterised by

the cluster decomposition theorem. The proof of this theorem relies on using an axiomatic

QFT approach, similar to what we saw in section 3.1.2. [24]

Having the cluster decomposition property, the vacuum expectation value of a product

of operators in some region A and some other operators in some region B, far away from

A, asymptotically equals the product of the expectation value of the product of operators

in A times the expectation value of operators in B. Consequently, sufficiently separated

regions behave independently.

Going back to the mass gap, not only does it have a physical significance as we saw

in previous sections, but also its existence implies clustering [11]. Let x⃗ ∈ R3 be a point

in space. Also, let H and P⃗ denote the energy and momentum, generators of time and

space translation. For any positive constant C less than the mass gap ∆ and for any

local quantum field operator O(x⃗) = e−iP⃗ ·x⃗OeiP⃗ ·x⃗ such that ⟨Ω|O|Ω⟩=0, one has

| ⟨Ω|O(x⃗)O(y⃗)|Ω⟩ | ≤ exp (−C|x⃗− y⃗|) , (4.3)

for sufficiently large |x⃗ − y⃗|. As before, Ω ∈ H is the vacuum vector. Equation 4.3

implies lim|x⃗−y⃗|→∞ | ⟨Ω|O(x⃗)O(y⃗)|Ω⟩ | = 0 which translates into the fact that sufficiently

separated operators are independent. This clustering property, may make it possible to

apply mathematical results established on R4 to any 4-manifold [11] and hence the mass

gap may also be important for mathematical applications of four-dimensional quantum

gauge theory to geometry.
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Chapter 5

Concluding remarks

In this work, we discussed the mathematical concepts that are essential in order to under-

stand the Yang–Mills problem. Starting with gauge transformations, we motivated the

QED Lagrangian and consequently generalized the procedure to write down the Yang–

Mills Lagrangian. Then, we described quantum fields at the physical level of precision and

compared this description to the corresponding mathematical formulation in the context

of the Wightman axioms.

The official statement of the problem was then quoted from [11] and the mass gap was

defined. We then briefly looked at the challenges of solving the existence part of the prob-

lem. A more extensive discussion of the mass gap was given in the next chapter. Using

QCD as an example of non-abelian gauge theory, we examined asymptotic freedom and

colour confinement, and how these concepts are related to the QCD mass gap. Interest-

ingly, these concepts are not mathematically understood but have only been shown to be

true in lattice QCD computer simulations, where the theory has been severely simplified.

Apart from the physical implications of the mass gap, we also saw that there are im-

portant mathematical implications. One particularly important implication stems from

the clustering property. The clustering property may make it possible to apply mathe-

matical results established on R4 to any four-dimensional manifold. Therefore, the mass

gap may be important for applications of quantum gauge theory to geometry. This is
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one of the reasons that the CMI scientific advisory board has chosen a problem about

quantum gauge theory in four dimensions to be part of the millennium prize problem list.
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